

Semiclassical Poisson and Self-Consistent Poisson-Schrodinger Solvers in QCAD

Xujiao (Suzey) Gao, Erik Nielsen, Ralph Young, Andrew Salinger, Richard Muller

Outline

Poisson Solver Background

$$-\nabla(\varepsilon_{s}\nabla\phi)=q(p-n+N_{D}^{+}-N_{A}^{-})$$

Applications of Poisson Solver

SiO2

Silicon

Schrodinger Solver

$$-\frac{\hbar^2}{2}\nabla\left(\frac{1}{m^*}\nabla\psi\right) + V\psi = E\psi$$

Poisson Solver – Carrier Statistics

Poisson equation in a semiconductor: $-\nabla(\varepsilon_s \nabla \phi) = q(p - n + N_D^+ - N_A^-)$

Maxwell-Boltzmann (MB) statistics

$$n = N_C \exp\left(\frac{E_F - E_C}{k_B T}\right)$$
 $p = N_V \exp\left(\frac{E_V - E_F}{k_B T}\right)$

Fermi-Dirac (FD) statistics

$$n = N_C \frac{F_{1/2}}{N} \left(\frac{E_F - E_C}{k_B T} \right) \quad p = N_V \frac{F_{1/2}}{N_B T} \left(\frac{E_V - E_F}{k_B T} \right)$$

Fermi-Dirac integral of 1/2 order

$$F_{1/2}(x) = \frac{2}{\sqrt{\pi}} \int_0^\infty \frac{\sqrt{\varepsilon} d\varepsilon}{1 + \exp(\varepsilon - x)}$$

$$f(\phi) = ?$$

Approx.
$$F_{1/2}(x) = \left[e^{-x} + \frac{3\sqrt{\pi}}{4}v^{-3/8}\right]^{-1}$$
 [1]
 $v = x^4 + 50 + 33.6x\{1 - 0.68 \exp[-0.17(x+1)^2]\}$

Poisson Solver – What Is Solved

Under thermal equilibrium (No current flow), $\mathbf{E}_{\mathbf{F}}$ = **const** through out a device, chosen to be 0 in QCAD.

$$E_c = -q(\phi - \phi_{ref}) - \chi$$

$$E_v = -q(\phi - \phi_{ref}) - \chi - E_g$$

$$n(\phi), p(\phi)$$

Heterostructure:

- E_c & E_v are discontinuous
- Vacuum level E₀ is continuous

Requirement of potential (φ):

Continuous everywhere

Choice of potential (φ):

• Let -q (
$$\phi$$
 - ϕ_{ref})= $E_0 = E_c + \chi$

Constant shift

Choice of $q\phi_{ref}$ does not change the locations and profiles of E_c and E_v w.r.t. E_F , but could lead to different numerical behavior during simulation.

Poisson Solver – Incomplete Ionization

$$-\nabla(\varepsilon_{s}\nabla\phi) = q(p-n+N_{D}^{+}-N_{A}^{-})$$

$$N_{D}^{+} = \frac{N_{D}}{1+2\exp\left(\frac{E_{F}-E_{D}}{k_{B}T}\right)}$$

$$N_{A}^{-} = \frac{N_{A}}{1+4\exp\left(\frac{E_{A}-E_{F}}{k_{B}T}\right)}$$
Follow Fermi-Dirac distribution

 $N_{A,D}$ = dopant concentration, $E_{A,D}$ = dopant activation energy level

Three types of boundary conditions:

- Flux conservation b.t.w. different materials: $\varepsilon_{s1} \nabla \phi_1 \bullet \eta_1 = \varepsilon_{s2} \nabla \phi_2 \bullet \eta_2$
- Neumann condition: $\varepsilon_s \nabla \phi \bullet \eta = 0$
- Dirichlet condition: $\phi = const$

Contact on insulator Ohmic contact

Automatically satisfied in the finite element framework

Contact on insulator

Ohmic contact

Contact on insulator:

$$\phi_{ins} = V_g - (\Phi_M - q\phi_{ref})/q$$

Ohmic contact:

charge neutrality and equilibrium conditions hold

$$n(\phi) + N_A^-(\phi) = p(\phi) + N_D^+(\phi)$$

Example: p-type semiconductor with MB at 300 K,

$$\phi_{ohmic} = V_a - \frac{k_B T}{q} \ln \left(\frac{N_A}{n_i} \right)$$

Poisson Solver – Application 2D

Apply the Poisson solver to simulate a PMOS capacitor

[2] https://nanohub.org/tools/schred

Poisson Solver – Application 3D

T = 50 K T = 2 K

$$Q_{it} = -6.235 \times 10^{11} \text{ cm}^{-2}$$
 $Q_{it} = -6.16 \times 10^{11} \text{ cm}^{-2}$

	Exp.	QCAD T = 50 K	QCAD T = 2 K	QCAD T = 2 K
Q _{it} [cm ⁻²]	?	-6.235x10 ¹¹	-6.16x10 ¹¹	-6.235x10 ¹¹
# of e	1	1.009	0.997	0.21
AG [aF]	2.37	4.765	5.29	2.97
TP [aF]	0.48	0.315	0.35	0.18
CP [aF]	0.54	0.778	0.857	0.63
LP [aF]	0.29	0.582	0.642	0.52
L [aF]	0.56	1.91	2.11	1.30

Outline

Poisson Solver Background

$$-\nabla(\varepsilon_{s}\nabla\phi)=q(p-n+N_{D}^{+}-N_{A}^{-})$$

Applications of Poisson Solver

SiO2

Silicon

Schrodinger Solver

$$-\frac{\hbar^2}{2}\nabla\left(\frac{1}{m^*}\nabla\psi\right) + V\psi = E\psi$$

Schrodinger Solver

Time-independent effective mass Schrodinger equation:

$$\frac{-\hbar^2}{2} \nabla \left(\frac{1}{m^*} \nabla \psi(r) \right) + V(r) \psi(r) = E \psi(r)$$

Apply finite element method \longrightarrow Eigenvalue problem: [H] $[\psi]$ = [E] $[\psi]$

Solved by Sandia high-performance eigensolver (Anasazi)

Three types of boundary conditions:

- Flux conservation b.t.w. different materials: $\frac{1}{m_1^*} \nabla \psi_1 \bullet \mathring{\eta}_1 = \frac{1}{m_2^*} \nabla \psi_2 \bullet \mathring{\eta}_2$
- Neumann condition: $\frac{1}{m^*} \nabla \psi \bullet \mathring{\eta} = 0$
- Dirichlet condition: $\psi = 0$

Automatically satisfied in the finite element framework

Schrodinger Solver – Application 1D

Apply the Schrodinger solver to a 1D parabolic potential well

QCAD wave functions and energies agree well with analytic results.

Schrodinger Solver – Application 2D

QCAD 2nd WF

Apply the Schrodinger solver to a 2D square infinite potential well

QCAD 1st WF

	QCAD	Analytic
E1 [eV]	0.7521	0.7521
E2 [eV]	1.8805	1.8802
E3 [eV]	1.8805	1.8802
E4 [eV]	3.0088	3.0084
E5 [eV]	3.7616	3.7605
E6 [eV]	3.7616	3.7605

QCAD 3rd WF

Schrodinger Solver – Application 3D

Apply the Schrodinger solver to a 3D cube infinite potential well

Analytic normalized WFs

$$\psi(x,y,z) = \sqrt{\frac{8}{L_x L_y L_z}} \sin\left(\frac{\pi n_x x}{L_x}\right) \sin\left(\frac{\pi n_y y}{L_y}\right) \sin\left(\frac{\pi n_z z}{L_z}\right)$$

	QCAD	Analytic
E1 [eV]	0.6382	0.6373
E2 [eV]	0.9215	0.9194
E3 [eV]	1.1419	1.1387
E4 [eV]	1.3972	1.3895

$$4^{th}$$
 WF $(n_x = n_v = 1, n_z = 3)$

Outline

Poisson Solver Background

$$-\nabla(\varepsilon_{s}\nabla\phi)=q(p-n+N_{D}^{+}-N_{A}^{-})$$

Applications of Poisson Solver

SiO2

Silicon

Schrodinger Solver

$$-\frac{\hbar^2}{2}\nabla\left(\frac{1}{m^*}\nabla\psi\right) + V\psi = E\psi$$

Self-Consistent Poisson-Schrodinger

Coupled Poisson equation:
$$-\nabla(\varepsilon_s \nabla \phi) = q[p(\phi) + N_D^+(\phi) - N_A^-(\phi) - n(\phi, E_i, \psi_i)]$$

$$n(\phi, E_i, \psi_i) = \begin{cases} n(\phi) & \text{Semiclassical outside quantum region} \\ \sum_i N_i |\psi_i|^2 & \text{Quantum region} \end{cases}$$

1D (quantum well)

$$g_{\nu} \frac{m^* k_B T}{\pi \hbar^2} F_0(\eta_F)$$

Where
$$\eta_F = \frac{E_F - E_i}{k_B T}$$

2D (quantum wire)

$$\mathcal{E}_{v} \left(\frac{2m^{*}k_{B}T}{\pi\hbar^{2}} \right)^{1/2} F_{-1/2}(\eta_{F})$$

Where
$$\eta_F = \frac{E_F - E_i}{k_B T}$$
 $F_k(\eta_F) = \frac{1}{\Gamma(k+1)} \int_0^\infty \frac{\varepsilon^k d\varepsilon}{1 + \exp(\varepsilon - \eta_F)}$ Fermi-Dirac integral of kth order

3D (quantum dot)

$$\mathcal{Z}_{\nu} \frac{2}{1 + \exp(-\eta_F)}$$

Coupled Schrodinger equation:
$$\frac{-\hbar^2}{2}\nabla\left(\frac{1}{m^*}\nabla\psi_i\right) + V(\phi,n)\psi_i = E_i\psi_i$$
$$q\phi_{ref} - \chi - q\phi + V_{xc}(n)$$

Parametrized in the Local

Density Approximation [3]

Self-Consistent Poisson-Schrodinger

Simple/Direct iteration of Poisson and Schrodinger leads to divergence due to strong coupling b.t.w. them.

Predictor-corrector iteration scheme [4] modifies quantum electron density calculation:

$$n_{q}(E_{i}, \psi_{i}) \text{ with } \eta_{F} = \frac{E_{F} - E_{i}}{k_{B}T}$$

$$N_{q}^{(k)}[\phi^{(k)}, \phi^{(k-1)}, E_{i}^{(k)}, \psi_{i}^{(k)}] \text{ with } \tilde{\eta}_{F}^{(k)} = \frac{E_{F} - E_{i} + q[\phi^{(k)} - \phi^{(k-1)}]}{k_{B}T}$$

$$V[\phi^{(0)}] \text{ w/o Vxc(n)}$$
Solve coupled Schrodinger
$$E_{i}^{(k)}, \psi_{i}^{(k)}$$

$$V[\phi^{(k)}, \tilde{n}_{q}^{(k)}]$$
Solve coupled Poisson
$$n_{q}^{(k)}[\phi^{(k)}, \phi^{(k-1)}, E_{i}^{(k)}, \psi_{i}^{(k)}]$$

$$N_{Q}^{(k)}[\phi^{(k)}, \phi^{(k-1)}, E_{i}^{(k)}, \psi_{i}^{(k)}]$$

[4] A. Trellakis, A. T. Galick, A. Pacelli, and U. Ravaioli, J. Appl. Phys. **81**, 7880 (1997).

YES

Converged?

Self-Consistent P-S – Application 1D

Test structure: 1D MOS capacitor with tox = 4 nm, Na = $5e17 \text{ cm}^{-3}$

[me V]	SCHRED (w/o Vxc)	QCAD (w/o Vxc)	SCHRED (w/ Vxc)	QCAD (w/ Vxc)
E11	-71.76	-72.54	-73.68	-74.50
E12	26.12	26.71	45.63	45.72
E13	89.22	90.73	118.83	118.94
E14	142.27	144.69	175.60	176.10

With Vxc, energy separation increases and wfs become more spatially confined.

Sandia

Laboratories

Self-Consistent P-S – Application 2D

Test structure: gate-induced Silicon quantum wire from Ref. [5]

[5] Steven E. Laux and Frank Stern, Appl. Phys. Lett. 49, 91 (1986).

Self-Consistent P-S – Application 2D

Self-Consistent P-S – Application 3D

Lowest four wave functions at z = -2 nm surface

Conclusion

Discuss details of three QCAD solvers

$$-\nabla(\varepsilon_s \nabla \phi) = q(p - n + N_D^+ - N_A^-)$$

$$\frac{-\hbar^2}{2} \nabla \left(\frac{1}{m^*} \nabla \psi\right) + V\psi = E\psi$$

$$n(\phi, E_i, \psi_i) \leftrightarrow V(\phi, n)$$

Demonstrate applications of QCAD solvers

Physics-based and robust QCAD tool for quantum devices modeling

Develop new capabilities

Simulate experimental quantum dots to provide feedback and design guidance for experiment

